CONSTRUCTION MATERIALS BEG 159CI

Year-I									Semeste	r-I
	Teaching Schedule Hours/week			Examination Scheme						To
				Final				Internal Assessment		Total Marks
				Th	eory	Practical		Theory Marks	Practical Marks	
	L	Р	Т	Duration	Marks	Duration	Marks			
	3	2/2	1	3	80	-	_	20	25	125

Course Objective:

Course Contents:

1. Introduction

- 1.1 Scope and types of construction materials
- 1.2 Properties of materials: Physical, Mechanical, Chemical, Thermal and **Electrical properties**

2. Characteristics of Construction Materials

- 2.1 Stress/Strain Relationships, modulus of Elasticity and Poisson's Ratio, Comparative stress-strain curves for various engineering materials
- 2.2 Stress-strain diagram for ductile metal
- 2.3 Griffith's theory for brittle fracture
- 2.4 Principles of hardness and impact tests of engineering materials

3. Basic Construction Materials

3.1 Sieve Analysis

- 3.2 Stone, its type and properties
- 3.3 Aggregate (fine & coarse), their quality
- 3.4 Bulking of sand

4. Metals and its Microstructure Study

- 4.1 Categorization of Metals: Steel, aluminum, Cast Iron
- 4.2 Formation, composition and characteristics of cast iron, wrought iron, steel Aluminum and alloys and their uses
- 4.3 Microstructure study of brittle and ductile metals/ steel
- 4.4 Elastic and plastic behavior
- 4.5 Hardness and toughness
- 4.6 Ductility and resilience
- 4.7 Other mechanical properties (i.e. brittleness, malleability, stiffness, tenacity, creep
- 4.8 fatigue, wear resistance etc)
- 4.9 Deformation of steel
- 4.10 Heat treatment of steel & its thermal properties
- 4.11 Fracture modes of materials
- Steel corrosion & its treatment 4.12

(2.5 hrs)

(3 hrs)

(8 hrs)

(6 hrs)

 5. Wood 5.1 Types of wood 5.2 Bamboo as a construction material 5.3 Tree structure and microstructure of wood 	(6 hrs)
 5.4 Characteristics of soft & hard wood 5.5 Properties of quality wood 5.6 Advantages and disadvantages of wood over other construction mat 5.7 Commercial forms of wood 	erials
5.8 Physical properties (e.g. Defects & seasoning)5.9 Mechanical and thermal properties	
 6. Properties of Ceramic Materials 6.1 Definition 6.2 Types of ceramics (ie.traditional & new generation) 6.3 Composition of bricks, its harmful ingredients, qualities of good bri 6.4 Popular types of titles, and their uses, Roof tiles, Floor tiles for wall 6.5 Glass, its manufactory types, forms & common properties 	
 7. Cementing Materials Clay Lime (composition, formation) Types and properties of lime Cement (composition, formation) Types and properties of cement Chemical reaction between lime and water & cement and water Testing of cement mortar and lime mortar 	(5 hrs)
 8. Properties of Asphalt Materials 8.1 Asphalt, bitumen and tar 8.2 Types of asphalt cement, uses 8.3 Introduction to asphalt concrete and properties 	(3 hrs)
 9. Synthetic Polymers 9.1 Definition 9.2 Basic types (points, varnishes, plastics) 9.3 Properties of some polymers 9.4 Use of polymers in repairs of structures 	(3 hrs)
10. Miscellaneous Materials 10.1Fuels, Rubber, Adhesives, Additives, Abrasives, Insulating materia	(2.5 hrs) als
Laboratories: (i.) Seven Laboratories will be performed in this course. These are:	

- (ii.) Sieve analysis of clay, sand, gravel and crushed rock.
- (iii.) Hardness (Rockwell) tests on mild steel, alloy steel, aluminum alloy and cast iron.
- (iv.) Toughness (Charpy) tests on mild steel, alloy steel, aluminum alloy and cast iron.

- (v.)Microstructure examination of mild steel, alloy steel, aluminum alloy, cast iron and wood, using optical microscopes.
- (vi.) Tests to determine of linear coefficient of thermal expansion of aluminum, steel, wood, lime mortar, asphalt concrete and synthetic polymer
- (vii.) Setting time of cement
- (viii.) Microstructure examination of clay, lime mortar, cements mortar, asphalt concrete and one synthetic polymer.

Refrences:

- "Fundamentals of Engineering Materials", peter A. Thornton & Vito J. Colangelo, Prentice Hall Publishing Company
- "A Text Book of Material Science and Metallurgy, O.P. Khanna
- Introduction to Engineering Materials, B.K. Agrawal
- Engineering Materials, Gurucharan Singh